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T he initial-value problem for the linear, inviscid motion of a contained, rotating 
stratified fluid is considered in the limit of weak stratification, that is, for small 
values of the stratification parameter S = N2/Q2 ,  where N is the Brunt-VB;isLla 
frequency and !2 is the rotational frequency. The limiting flow is of interest 
because, although the initial-value problem has been studied, both for the case 
of a homogeneous, rotating fluid and for the case of a stratified, rotating fluid, 
the exact relationship of the two flows, in the limit of vanishing stratification, 
is not straightforward. For example, the method of determining, from the initial 
conditions, the steady geostrophic component of the flow of a rotating, stratified 
fluid does not in general give a motion that reduces, in the limit AS' -+ 0,  to the 
steady component of the flow of a homogeneous fluid. By including a considera- 
tion of slow unsteady motions that vary on a time scale dependent on the 
stratification parameter, the relationship of the limiting flow to the flow of a 
homogeneous fluid is established. 

1. Introduction 
A general linear theory of the initial-value problem for the motion of a con- 

tained, homogeneous, rotating, viscous, incompressible fluid has been given by 
Greenspan (1965). The theory describes the establishment, in a container of 
fairly general shape, of a state of rigid rotation from an initial state which is a 
small perturbation from rigid rotation. The Rossby number e = U / Q L  is there- 
fore considered negligibly small and the approximate governing equations are 
linear. It is also assumed that the direct action of viscous forces is confined to 
thin boundary layers on the container surface. The inviscid interior flow is first 
determined from the initial data and then corrected for the effects of the action 
of the viscous forces in the boundary layers. A linear system of partial differential 
equations, with time-independent coefficients, governs the interior inviscid flow 
and the solution is described as a superposition of normal oscillatory modes and 
a steady geostrophic mode. The mean circulation theorem is proved and is 
used to determine the geostrophic steady component from the initial data. 

The corresponding initial-value problem, for the inviscid motion of a con- 
tained, rotating fluid, which is also stratified in a gravity force field, has been 
studied by Howard & Siegmann (1969). A linear theory is developed to describe 
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motions that are assumed to be small departures from a state of rigid rotation 
and hydrostatic equilibrium. The fluid is considered, in general, to be com- 
pressible, and no restriction is made on the spatial dependence of the gravitational 
field or on the container shape. The solution is sought as a superposition of a 
time-dependent component and a time-independent geostrophic flow, and the 
main results concern the method of determination of the steady geostrophic 
mode from the initial data. 

Included as a special case in the study of Howard & Siegmann is, of course, 
the treatment of the initial-value problem for the inviscid motion of a contained, 
rotating, density-stratified liquid which obeys the Boussinesq approximation, 
and which is stratified in a gravity force field, where the gravity vector is anti- 
parallel to the rotation vector. We will restrict our attention, in this paper, to 
t h a t  situation. In  particular, it has been shown by Howard & Siegmann that the 
steady geostrophic mode can be uniquely determined from the initial conditions 
by the solution to an equation resulting from the time-independence of the 
potential vorticity . Other temporally conserved quantities result in the proper 
boundary conditions. A point of interest, with which we will be concerned here, 
is that, in the limit of weak statification, i.e. for vanishingly small values of the 
stratification parameter S = N2/Q2,  where N is the Brunt-Viiisalii frequency and 
i2 is the rotational frequency, the method of determining the steady mode for 
the stratified fluid does not, in general, reduce to that used in the problem with a 
homogeneous fluid. As a consequence, the exact relation of the limiting flow to the 
flow of a homogeneous fluid is not completely obvious. As mentionedin Howard & 
Siegmann, to relate the two flows, it is necessary to include a consideration of slow 
unsteady motions, with time scales dependent on the stratification parameter. 

In this paper, we consider the initial-value problem for the inviscid motion of a 
contained, rotating, stratified fluid in the limit of vanishing stratification, and 
we primarily investigate the relation of the limiting flow to the steady geostrophic 
component of the flow of a homogeneous fluid. It turns out that the characteristics 
of the limiting flow are different for containers with closed contours of constant 
height (Greenspan 1965; also defined in $2) that lie in planes perpendicular to the 
rotation and gravity vectors (we will refer to these as ‘flat’ contours), and for 
containers with a more general shape which, for the geostrophic flow of a homo- 
geneous fluid, require a component of velocity parallel to the rotation and gravity 
vectors (we will refer to this case as ‘sloping’ contours). Containers with ‘flat’ 
contours are considered in $ 3. For containers with ‘sloping’ contours, there is a 
further difference in the limiting flow when the contours are uniquely defined and 
when they are not. These two cases are treated in order in $4. 

An example of a container with a non-unique set of ‘sloping’ geostrophic 
contours is the ‘doubly sliced’ cylinder shown in figure 1. This configuration is 
formed from a circular cylinder, with axis aligned with the rotation vector and 
with plane parallel top and bottom surfaces that slope with respect to a plane 
perpendicular to the rotation vector. In  this case, it  is found that for S < 1 a 
set of low-frequency modes, which might be called contained weak stratification 
waves, arise to take the place of the geostrophic flow of a homogeneous fluid. 
The frequencies of these modes depend on S and approach zero as S --f 0. It is 
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shown in $ 5  that these modes exist in other situations where a weak stratification 
interacts with the lowest-order geostrophic flow. 

t 
X 

FIGURE 1. The ' doubly sliced' cylinder configuration where the angle u = tan-l(b/a). 

2. Formulation 
We initially consider a viscous, heat conducting, incompressible fluid, which 

satisfies the Boussinesq approximation, in a frame of reference rotating with a 
uniform angular velocity S2 = Szk and acted on by a gravitational acceleration 
g = - qk which is antiparallel to the rotation vector. The governing equations are 

v.q = 0, 

aT 
- +q.VT = K V ~ T ,  
at 

P = POP - a(T - To)], 

where q, p ,  p and T are respectively the velocity, pressure, density, and temper- 
ature of the fluid at a point r; v, K and a are respectively the constant kinematic 
viscosity, thermometric conductivity, and coefficient of thermal expansion; po 
and To are constant reference values of the density and temperature; k is a 
constant unit vector in the z direction in Cartesian (2, y, x )  or cylindrical polar 
( r ,  8, x )  co-ordinates. 

We assume that the Froude number P = WL/q is small and consider a linear 
1 - 2  
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equilibrium temperature and density distribution (see Greenspan 1968, 9 1.4) 
given by 

where ATo( > 0)  is the basic temperature difference imposed over the height L. 

q = Uq*, r = Lr*, t = Q-lt*, 

The variables are non-dimensionalized in the following manner : 

ip = -pogLz* + $pogLaAToz*2 +Po UQLp*, 

T = T,+ATT*, p = ps+poaATp*, 

where po  is a constant reference pressure, U is a reference velocity, and AT is 
a reference perturbation temperature. 

The resulting dimensionless equations are (dropping the asterisks) 

v.q  = 0, ( 2 . l a )  

a p + e q . V q + 2 & x q  at = -Vp--Jpk+EV2q, 

aT S E 
- + e q . V T + - q . &  = -V2T, 
at 6 0- 

(2 . lb)  

(2 . l c )  

p = -T, ( 2 . 1 4  

where E = v/QL2 is the Ekman number, 0- = v / K  is the Prandtl number, 
S = agATo/Q2L is the stratification parameter (the inverse of the internal Froude 
number) and can be written as S = N2/Q2,  where N 2  = agATo/L is the square of 
the Brunt-Vaisala frequency, E = U/QL is the Rossby number, and 

6 = agAT/QU. 

The parameter 6 involves a relation between the value of the characteristic 
velocity U and the characteristic perturbation temperature AT and is usually 
chosen to achieve certain balances in the equations when the flow is driven by 
either a given U or a given AT. In  general, for an initial-value problem, both U 
and AT are characterized by the initial conditions. However, to recover the flow 
of a homogeneous fluid in the limit S --f 0, balance requirements, discussed in 9 4, 
indicate that an appropriate scaling for 6 is 6 = O(Sk), which implies that 

AT = O(&ATOS-&) = O[U(hT,/Lag)*]. (2.2a) 

We will, therefore, use the relation, 
6 = SB, (2.2b) 

where, for simplicity, we assume that the O( 1) proportionality constant is 
absorbed in either U or AT, and we will consider problems for which the charac- 
teristic dimensional initial values vary in accordance with the scaling (2.2a) in 
the limit S --f 0. 

The equations for the linear theory of rotating, stratified, non-dissipative flow 
(Howard & Siegmann) are obtained from (2.1) with the assumption that the 
Rossby and Ekman numbers are small enough that the terms multiplied by 
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either B or E can be neglected. With this approximation the equations become 

v.q = 0) (2 .3a)  

3 + 2 k x q  = -Vp+SBT&, (2 .3b )  
at 

aT 
-+S4q .k  = 0) 
at 

( 2 . 3 ~ )  

where the equation of state has been used to eliminate p. The corresponding 
boundary and initial conditions, for flows in closed rigid containers, are 

q . fi = 0, on X (the container surface), (2.4) 

where fi is the outward pointing unit normal vector to X, and 

qP-9 0) = q * W 7  (2.5a) 

T(r ,  0) = T*(r), (2 .5b)  

where it is assumed that the initial velocity distribution satisfies (2 .3a )  and (2.4). 
If solutions to these equations are sought as a superposition of a time- 

independent geostrophic component and a time-dependent component, in the 

(2 .6a)  
form , 

(2.68) 

( 2 . 6 ~ )  

q = qg(r) + q’(r, t ) ,  

P = P g W  +p’(r, t ) ,  

T = T,(r) + T’(r, t ) ,  

we find that the steady component, which satisfies the equations, 

v.qg = 0)  

2k x qg = - vpg t- s~T,G, 
(2 .7a )  

(2.76) 

qg.k = 0 )  ( 2 . 7 ~ )  

can be written as q g  = & x VPg, (2 .8a )  

with Pgs  = xqg, (2 .8b)  

where the second subscript on p g  denotes partial differentiation, and where p g  
must be such that (2.4) is satisfied, but is otherwise undetermined. 

It has been shown by Howard & Siegmann that the geostrophic component 
can be determined from the initial data by the solution to an equation which 
results from the time-independence of the potential vorticity. In  particular, 
(2.3) yield the result that 

a 
at -(k.V x q+&W&.VT) = 0, (2.9) 

and Howard & Siegmann have shown that the steady component is uniquely de- 
termined by the equation, 

&. V x qg+ 2X-*Tg2 = k.0 x q* + 2#-4T,, = II, (2.10) 
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which, when written in terms of the pressure p g ,  is 

v$&+ 4s-1pgzz = 2 n ,  (2.11j 

where V g p ,  = puxx +puyy, with the boundary conditions: 

(2.12a) 

on parts of the container surface that lie in planes perpendicular to & (i.e. in 
z = const. planes), hereafter referred to as horizontal 'flat ' bounda.ries; 

(ii) C0(4,, T,; r) = cots,, T*; J3, (2.12b) 
for all I', where 

and where I? is the closed contour, with arc length ds", formed by the intersection 
of a z = const. plane with the non-horizontal part of the container surface; 

(iii) pn = const., on I?. (2.12c) 

We point out that, for the problem under consideration, Siegmann ( 1  968) has 
proved that, in place of boundary condition (ii), the following condition may be 
used : n n  n n  

( 2 . 1 2 4  

for all A(x), where the integral is over the area A ( z )  in a horizontal ( z  = const.) 
plane enclosed by the boundaries of the container. We will later find it convenient 
to use (iia) in place of (ii). For use with (2.11), the boundary conditions (2.12) 
can be written in terms of the pressure pn with the substitution of ( 2 . 8 ~ ~  b).  

The initial-value problem for the inviscid motion of a homogeneous fluid, the 
governing equations of which are (2 .3a ,b )  with X = 0 and the boundary and 
initial conditions of which are (2.4) and ( 2 . 5 ~ ) ~  has been studied by Greenspan 
(1965, 1969) (see also Greenspan 1968, 5 2.5-2.11). The solution can be sought as 
the superposition of a steady geostrophic flow and of a time-dependent component 
(2.6a,b),  where, in several cases, it has been possible to represent the time- 
dependent component as a superposition of inertial modes. For containers, with 
top and bottom surfaces given respectively by x = f(x, y) and z = - g(z, y), where 
all contours of constant height h = f+ g (geostrophic contours) are closed curves 
on the container surface, the pressure p ,  is a function of h and the geostrophic 
velocity can be written in the form, 

(2.13) 

where n, and nB are outward pointing normal vectors to the top and bottom 
surfaces and are given by 

n, = & - = 11 + (V~)Z]*  hi,,, (2.14a,) 

n, = -& - Vg = [ I +  (~g)21$fi , ,  (2.14 h )  

where fi, and fi, are unit normal vectors. 
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As described by Greenspan (1969), the mean circulation of the geostrophic 
flow, around a geostrophic contour C(h), equals that of the initial velocity field, 

(2.15) that is, 

where we use the notation 
MCPl,; h) = MC(q*; h), 

( 2 . 1 6 ~ )  

and 

where the directed arc length along C is 

d s  = dsnT x ns/lnT x nsl. 

The z-average in (2.16b) will also be referred to as the vertical average. 
In  addition to (2.1 5 ) ,  the mean circulation of the time-dependent component 

(2.17) 
is zero, i.e. 

and, in terms of the initial data, the geostrophic velocity (2.13) can be expressed 

MC(q’;h)  = 0, 

as 
(2.18) 

nT x nB.ds  = h InT x nsl ds. (2.19) 
f C ( h )  

where 

When the geostrophic contours are not uniquely defined, i.e. when h is a 
constant and nT = -nB (Greenspan 1968, 5 2.11), the geostrophic velocity can 
be written as 

q g  = in, vpg, (2.20) 

and condition (2.15) is replaced by 

hn, .Vxq,=  nr .Vx(q, ) .  (2.21) 

The geostrophic pressure is determined by the solution to (2.21), after the sub- 
stitution of (2.20)) with a boundary condition derived from (2.4). 

We call attention to the basically different forms of the conditions used to  
determine the steady geostrophic mode in a homogeneous, rotating fluid and in 
a stratified, rotating fluid. In  the homogeneous case, the specifying equation, 
(2.15) or (2.21), results from the time-independence of a vertically averaged 
quantity which, in a container with uniquely defined geostrophic contours, is 
also integrated around a contour. In  a stratified fluid, however, the basic equation 
(2.10) results from the time-independence of the potential vorticity a t  every 
spatial point. Nevertheless, if we consider solutions to the stratified initial-value 
problem we expect to recover, in the limit S -+ 0,  the solutions for a homogeneous 
fluid. We can see, however, that, according to (2 .7c) ,  the steady geostrophic 
mode will, for all values of S not identically equal to zero, have qff. f = 0. In  the 
limit S + 0,  therefore, this steady component cannot possibly approach the 
steady flow of a homogeneous fluid in a container whose geostrophic contours 
require a non-zero value of qff .f. This fact obscures the exact relationship of 
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the limiting flow to the flow of a homogeneous fluid. As was pointed out by Howard 
& Siegmann, to relate the two cases it is necessary to consider slow unsteady 
motions with time scales dependent on IS. This problem is considered in the 
following sections. 

3. The inviscid solution in the limit S -+ 0: ‘flat’ geostrophic contours 
In  3 3 we consider the relationship, in containers with ‘flat ’ contours of constant 

height, of the limiting flow of a stratified fluid, as S -+ 0, to the flow of a homo- 
geneous fluid. Typical examples of containers with ‘flat ’ contours are a spherical 
shell and a right circular cylinder with its axis aligned with the rotation vector. 
I n  the spherical shell, of course, the geostrophic contours are uniquely defined, 
whereas in the cylinder they are not. We will also assume, for all of the containers 
considered in this paper, that the geostrophic contours are closed. This eliminates 
any consideration of geometries, such as the ‘sliced’ cylinder, the flow in which 
was studied, for a homogeneous fluid, by Pedlosky & Greenspan (1967). 

For containers with ‘flat’ contours, the geostrophic flow of a homogeneous 
fluid has no component of velocity in the vertical direction (i.e. parallel to k). In  
this case it can be shown that the steady mode of a homogeneous fluid is included 
in the steady geostrophic flow of a stratified fluid and that, with the exception of 
boundary-layer solutions in regions of zero volume, it is the limiting solution of 
(2.7a, b, c) determined by (2.10) and boundary conditions (2.12a, c, d) .  

First, considering a container with a uniquely defined set of contours, we can 
show from (2.10) and the boundary conditions (2.12a, c, d )  that the mean circula- 
tion of the geostrophic component of the flow of a stratified fluid is equal to that 
of the initial flow. This is accomplished by integrating (2.10) over an area in a 
horizontal plane bounded by any geostrophic contour and then over the vertical 
distance h between bounding top and bottom contours. With the subsequent 
use of boundary condition ( 2 . 1 2 4  and Stokes’ theorem, it follows directly that 

MC(q,; h) = JfC(q*; h). (3 .1)  

When the top and bottom surfaces are ‘flat’ and the geostrophic contours are 
not unique, the integration of (2.10) over the height h and the use of boundary 
condition (2.12 a )  yields k . 0  x (4,) = k . 0  x (q*). 

We next consider, in the limit S --f 0, the particular solution to (2.7a, b,c)  
determined by (2.10) and (2 .12~4  c,  a). The complete solution evidently has the 
following expansion: 

q = qgo(r) + qoP7 4 + XQl,,(r) + e ( r ,  4) + . . * > 

T = Tg,(r)+To(r , t )+S~(T, , (r)+T,(r , t ) )+ .... 

(3.3a) 

(3 .3  c) 

P = POOP) +POP, t )  fwP, l ( r )  +Pl@? t ) )  + -.. Y ( 3 . 3 b )  

Substituting this expansion in (2.3) and solving for q,,, we obtain 

where 

(3.4) 

(3.5) 
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It follows that pgo = pgo(x, y), and, therefore, for containers with unique con- 
tours, it is implied by ( 2 . 1 2 ~ )  that 

We also find, upon substituting (3 .3 )  into (3 .1 )  that 

P g o  = P g O ( W  (3 .6 )  

(3 .7)  Jwq,,; 4 = MC(q*;  I t ) .  

For containers with non-unique contours, we obtain, in a similar manner, from 
( 3 . 2 )  that h& . v x q,, = & . v x (q*). 

Equations (3 .4 ) ,  (3 .5 )  and (3 .6 )  show that the lowest-order steady flow is a 
possible geostrophic flow of a homogeneous fluid, and (3 .7 )  and (3 .8 )  show that, 
depending on the geometry of the container, it has either the same value of the 
mean circulation or the same value of the z-averaged vertical component of 
vorticity as the initial velocity field. Therefore, for containers with ‘flat’ con- 
tours of constant height the steady geostrophic component of a stratified fluid 
contains the geostrophic mode of a homogeneous fluid and reduces to it in the 
limit X --f 0. 

These considerations, however, do not include the possibility of boundary- 
layer solutions in regions of zero volume in the limit X + 0. These, in fact, can 
occur and to demonstrate this and to identify other points of interest concerning 
the limiting flow we consider the initial-value problem for a weakly stratified 
fluid. 

Assuming that the complete solution has an expansion that proceeds as (3 .3) ,  
we obtain, upon substituting this expansion into (2 .3) ,  the following sets of 

( 3 . 9 a )  
equations: 

& x q g o  = --pg0; 
v.qo = 0, 

V 4 , O  = 0, 
(3 .9b )  

(3.1 0 u)  

(3.10 b )  
a 
- q 0 + 2 & x q o  = -Vpo, at 

% = o ;  
at 

( 3 . 1 0 ~ )  

v. q,, = 0. (3.11 a)  

2?& x q g ,  = - VP,1 + qok, ( 3 . l l b )  

where the boundary condition (2 .4 )  must be satisfied by each velocity vector 
in ( 3 . 3 ~ ) .  

3.1. Cylindrical container 

We will choose a specific container shape and first consider the initial-value 
problem for the flow in a right circular cylinder with axis aligned with the 
rotation vector. In  cylindrical polar co-ordinates the container surface is given 
b y r  = ro, z = Oandx = 1. 

The lowest-order equations (3 .9 )  and (3 .10)  are the same as those for a homo- 
geneous fluid, and they imply ( 3 . 5 ) .  The geostrophic velocity can be expressed 
as given in (3 .4 )  and it follows, in the same manner as for a homogeneous fluid, 
that the geostrophic flow is determined by (3 .8 ) .  
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The time-dependent component, satisfying (3.10)) can be sought in the form 
of a superposition of oscillatory modes, and, to the first approximation and with 
the exception of the modes with very low frequencies of O(SB),-f these are the 
same as those of a homogeneous fluid. To higher order, there will, of course, 
be frequency corrections depending on S and the unsteady terms in the expansion 
(3.3) should properly be written q, = qo(r, t ,  S*t, St, . . .), etc., where this notation 
reflects the use of the method of multiple time scales (see, for example, Cole 
1968, ch. 3), which will be employed in several instances in what follows. The 
determination of these corrections to the basic inertial modes of a homogeneous 
fluid is, in principle, straightforward and will not be discussed for any of the 
problems considered here. 

Continuing with the determination of the first-order steady velocity field q,,, 
we tentatively, as a result of (3.10c), set To = 0,  and consider that the lowest- 
order temperature is completely represented by Tff0(r). It then follows that 
qo(r) = T,(r) and the solution for qgl, which satisfies (3.11), can be written 

(3.12) 

where the function q5(x,y) is to be determined. The boundary condition (2.4) 
is satisfied on the top and bottom surface, but we find that (3.12) cannot possibly 
satisfy (2.4) at the side wall unless T,&r = r,,) = 0. This would appear to indicate 
that some additional unsteady motion must absorb the non-axisymmetric part 
of the initial temperature distribution at  the cylinder side wall. A hint of this 
can be seen by considering the equation, obtained from (2.3), for the radial 
component of vorticity, 

a ,  S* aT 
-r.Vxq-2&.V(q.P) = --, 
at r a6 

where i’ is the unit vector in the radial direction. If this equation is evaluated a t  
r = ro, where q . P = 0, we can see that a non-zero value of T,(r = ro) could drive an 
unsteady motion on a long (compared with t )  time scale T = Sit. Further in- 
vestigation verifies this and shows that this motion is limited to a thin boundary 
layer with thickness O(S4) at  r = To. 

To investigate the behaviour of the flow in this layer, therefore, we define 
the stretched variables, 

and, using cylindrical polar co-ordinates, scale the boundary-layer correction 
variables, which are all functions of (p, 6, x ,  T ) ,  as 

v = Go+ ..., p = s4p1+ ..., 

p = S-i(r0 - Y), 7 = Sit, 

- 
u = S&il+ ..., w = Eo+ ..., T = To+ ..., 

where u, v and w are the velocity components in the p, 0 and z directions, re- 
spectively. 

t A separate analysis, which we omit, is needed for the modes with frequencies of 
O(S*).  We mention, however, that it has been shown by Siegmann (1968) that, in the 
cylinder, the modes that are similar in structure to  those in a homogeneous fluid have 
frequencies h2 > S. 
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The resulting boundary-layer equations are 

(3.13) 

- ZIP + r;lZO0 +was = 0, - 2@, - plP = 0, - 
'UOT + 2u1 + r;lp10 = 0, wos + PlZ - To = 0, 
- 
T,,+W, = 0. 

We note that, while most of the original terms remain, the lowest-order balance 
in the radial direction is quasi-geostrophic. 

The solutions to (3.13) have both a steady and a time-dependent component. 
The steady component, which we denote by a subscript g, adjusts the velocity 
field qgl, (3.12), so that the boundary condition (2.4) is satisfied at  the side wall, 

(3.14) 
i.e. so that 

To fully determine the steady solution, the following relations, which are readily 
derivable from (3.13) and (2.4), are needed: 

Zgl(p = O)+P.qul(r = To) = 0. 

The time integration of (3.15) and an application of the initial conditions (2.5) to 
the combined boundary-layer and interior variables, gives, in terms of the 
pressure, the equations : 

(3.16) 

( 3 . 1 7 ~ )  

- 
Pglpp + 4 P * I Z Z  = 0, 

F g l h  = 0, 1) = 0, 

where 8 is the unit vector in the 8 direction. In addition, it is required by (3.14) 

(3.17 c) 
that a 

3 (Fg1(P = 0) +Pgl(r = Y o ) )  = 0. 

and by the boundary-layer nature of the solution that pgl(p -+ 00) -+ 0. Equation 
(3.16) and boundary conditions (3.17) determine the steady component and 
correspond to the appropriate limiting form of the equations, (2.11) and (2.12a, 
b, c), derived by Howard & Siegmann. It is of interest to see that these relations 
appear explicitly in the determination of the steady mode in this side-wall 
boundary layer. 

The resulting solution for pgl is 

m 

where 

- 
pul = (A,, +Al,(@) cos (mm) edZmn)p, 

m= 1 
1 f l  
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The steady component has an O(1) velocity component in the 8 direction, so, 
which, in the limit s + 0, can remain non-zero only on the surface r = ro. 

For the time-dependent component, we seek the solution in the form of 
oscillatory modes, where we write, for example, 

p1 = $j1&, 0, 2) eihn+. 

Equations (3.13) can be combinedinto a single equation for &%, which is (dropping 
the subscript n) 

The boundary conditions on@,, resulting from the requirements that &,(p = 0)  = 0 
and that a0(z = 0)  = d0(x = 1) = 0, are 

iA$jlp - 2r,’$j1e = 0, a t  p = 0, 

@le = 0, at z = 0 , l .  

In  addition, we require that + 0 as p + 00. 

The eigenfunction solutions for @1 are 

$jlmk = cos (mnz) e ikee-amkp,  

where m, k = & 1, & 2, ..., and where 

and 

In particular, the resulting solution for To is 

a,, = 2 Imln( 1 -A:[<)-+, 
A,, = - k[(mnro)2 + P I - 9 .  

m m  

m = l  k = l  
To = - C [Amk cos (k8 + Amk7) + Bmk sin (k0 + h,,~)] 

x (1 - A2,k)-1 mn sin (mrz) e-gmk p .  

Note that, since k and A,, have the opposite sign, these solutions represent waves 
travelling strictly in the positive 8 direction, i.e. in the same direction as the basic 
rotation. In  addition, their structure in the radial direction is characterized by 
a simple exponential decay from the boundary. We also note that the radial 
velocity GI = 0. 

The non-axisymmetric part of the initial temperature distribution on the 
cylinder side wall evidently excites this set of boundary-layer modes and the 
coefficients A,, and Brnk can be determined, using the properties of the trigono- 
metric functions, by the requirement that 

(3.18) 

In  the limit X --f 0, the frequency and the extent of the region of existence of 
these boundary-layer oscillatory modes approach zero. In  a purely homogeneous 
fluid they do not exist. We note that these modes are the asymptotic form of the 
class I1 modal solutions, found by Siegmann (1968)) for a fluid, with an arbitrary 
value of S,  in a cylindrical container. We also point out that Siegmann (1968) 
has considered, in general, the initial-value problem for all the modes in the 
cylinder and that the appropriate limiting form of the coefficients shows that, in 
addition to the condition given by (3.18)) the class I1 modes can be excited 
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independently by certain parts of the initial velocity distribution. Our asymptotic 
analysis gives some insight, however, into one reason that these modes arise 
when a weak stratification is present and also, through the boundary-layer 
equations (3.13), into the balance of forces involved when S < 1. 

3.2. Spherical container 

The situation is different in a container without vertical side walls, and we next 
consider the motion in a spherical container with surface specified by (retaining 
cylindrical polar co-ordinates) x2 + r2 = 1. We assume initially the same form 
of expansion as before (3.3), and, of course, we find the same set of equations 
(3.9)-(3.11). In  this case, however, the lowest-order steady component of the 
velocity field qgo is determined by the mean circulation theorem (2.18). If we 
again tentatively assume that Tgo(r) = T*(r), we find that the first-order steady 
velocity field qgl cannot satisfy the boundary condition (2.4) unless (T& = 0. 
We are, therefore, led again to suspect that an additional unsteady motion 
must arise to absorb the non-axisymmetric part of the z-averaged initial tem- 
perature distribution. From our knowledge of the flow in the cylindrical con- 
tainer, we might expect that these motions vary on a long time scale, dependent 
on the stratification parameter. In  addition, because of the x-average in the 
above condition, we should expect the lowest-order solution for these modes to 
have z-independent values for both the temperature and the vertical velocity 
component and, consequently, a linear x dependence for the other variables. 

Further examination shows that the basic time scale of these motions is 
r1 = St, and that the expansion of the correction variables proceeds as 

q = L%(QO+SQ1+...), 

p = Sqpo+Xpl+ ...), 
T = !Po+X!Tl+ ..., 

( 3.1 9 a)  

(3.19b) 

(3.19 c) 

where all variables are functions of (r, 71, T ~ ,  . . .) and where T~ = St, 7 2  = Srl, etc. 

v.q, = 0,  ( 3 . 2 0 ~ )  

2fcx qo = -vpo+!Pofi, (3.20b) 

The lowest-order equations are 

( 3 . 2 0 ~ )  

with those for the next order being 

v.ql = 0, (3.21 a )  

(3.21 6 )  ailo+,&x q1 = -Vpl+@, 
87, 

( 3 . 2 1 ~ )  

It follows from (3.20a,b) that fc.V(q,.fc) = 0 and, consequently, from ( 3 . 2 0 ~ )  
that i?(!Poa)/&, = 0. The boundary condition (2.4) is, in this case, 

zq.&+rq.F = o on x2+r2 = 1. (3.22) 
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By substituting for the individual velocity components in (3.21 a) we obtain 

(3.23) 

In  addition, the application of boundary condition (3.22) to 4, yields, in terms 

(3.24) 

Since (3.23) contains both Po and Ip",, an additional relation between these two 
variables is needed. This is obtained by applying boundary condition (3.22) to 
&, and is 

Seeking solutions to (3.23)-(3.25) of the form 

&I = Zf,k(r) exp [ i (ke + hr~)I ,  

$1 = [zgodr) -I- X39idr)I exp [ i (ke  + AT,)] ,  and 

where k is an integer and where k 1 =  Alk(Sr,) + . . ., we find, from (3.24), 

(3.26) 
that 

which shows, in particular, that the frequency A,, is equal to zero for the axisym- 
metric, k = 0, component of Po (and, therefore, for the axisymmetric component 
of Po). From (3.23) and (3.24) we obtain (suppressing the ksubscript), respectively, 

~( r f ; ) '  - k2f, + 24r2gl = 0, (3.27) 

and (ky-0 - SAJ, + krf;) + 8k( 1 - r2) g, = 0, (3.28) 

where the prime denotes total differentiation. Eliminating g, from (3.27) and 
(3.28), we find 

= - # ?  

r2(1 - r2)f; + r( 1 - 4r2))f; + [ - k2( 1 + 2 3  + 24r2A,k-l]fo = 0. (3.29) 

With the transformations [ = (1 - r2)h and h,([)  = [f,, (3.29) reduces to 

( 1 - [ 2 ) h ~ - 2 ~ h ~ + [ 2 - 3 k 2 + 2 4 h l k - 1 - ~ 2 ( 1 - ~ 2 ) - 1 k 2 ] h o  = 0. (3.30) 

The appropriate boundary conditions for (3.30) result from the requirements, 
(3.22), that k.q(r = 0) = 0 and F.q(r = 1) = 0 and are 

hog = 1) = 0. (3.31a, 6 )  

A choice for A, that allows the boundary and initial conditions to be satisfied is 

Alnk = -+&1 -k2-+n(n+ l)], (3.32) 

h0([ = 0) = 0, 

where n is a positive integer. Equation (3.30) then becomes 

(1 - [2) h;; - 2[hh + [n(n + 1) - k2(1 - [2)-'] h, = 0, 

honk = ex[), 

(3.33) 

and the solutions are associated Legendre functions 

where, to satisfy (3.31), k =t= 0 and In - kl must be odd. 
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The resulting solution for Po can be written as 

m n  

n=l k=l 
f j o  = zg-1 c c e,$;(E) {Ank cos [k(B - @,)I +Bnksin [k(B - &T~)]} (3.34) 

0 if In-kl iseven, ( 1 if In -kJ  isodd, 
where 

and where only the lowest-order approximation (3.26) for the frequency has been 
retained. 

For the initial-value problem, the coefficients A,, and Bnk can be determined 
from the requirement that these modes absorb the non-axisymmetric part of 
the z-averaged initial temperature distribution, i.e. that 

The orthogonality and completeness properties of the associated Legendre 
functions and the trigonometric fwnctions are naturally utilized in this step. 
The restriction of In -kl to odd values is acceptable since the factor 5-l in (3.34) 
results in a multiplication of the temperature distribution by c, causing the 
product to vanish at = 0 and allowing it to be extended, in the interval 
- 1 Q 6 < 0, as an odd function, in which case, only odd values of 1%- kl are 
required. 

The lowest-order steady temperature field is then given by 

and, since (Tg0)@ = 0, the solution for the first-order velocity field qgl can be 
consistently determined. 

These low-frequency oscillatory modes are, as expected, the asymptotic form 
of the class I1 modal solutions, found by Siegmann (1968), for a fluid, with 
arbitrary values of S, in a spherical container. We note that, as was the case with 
the class I1 modes in the cylinder, these solutions represent waves travelling in 
the positive 0 direction and that they also absorb a non-axisymmetric part of 
the initial temperature distribution. Unlike the modes in the cylinder, however, 
the temperature, in the spherical container, is, to lowest order, z-independent 
and the modes exist throughout the fluid, not just in a wall-boundary layer. 
Also, the frequency is proportional to X, whereas in the cylinder it was propor- 
tional to S*. An additional noteworthy feature of the modes in the sphere, as 
seen from (3.34), is that, to lowest order, all of the phases of the waves travel in 
the positive 0 direction with the same angular velocity, d8/drl = 4. The frequency 
and the amplitudes of the velocity components both approach zero in the limit 
S -+ 0 and these modes do not exist in a homogeneous fluid. Again, the asymptotic 
analysis clarifies, through the initial condition requirement (3.35) and through 
the approximate governing equations (3.20) and (3.21) and their solution (3.34), 
the role that these modes play in the presence of a weak stratification. 
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4. The limiting solution: ‘sloping’ geostrophic contours 
For containers with ‘sloping ’ geostrophic contours there is an additional basic 

difference in the behaviour of the limiting flow. In  this situation, it is found that 
the lowest-order solution for the geostrophic flow must itself be time-dependent, 
varying in a long time scale which depends on the stratification parameter. 
The way in which this comes about can be readily seen, for example, in the case 
where the geostrophic contours are not uniquely defined. 

Consider a container formed from a general cylinder, with generators parallel 
to the z-axis and with top and bottom surfaces such that 

h = f + g  = 1, ( 4 . 1 ~ )  

and nT = -nB. (4 .16)  

The ’doubly sliced’ cylinder (figure 1) is a particular example of this type of 
geometry. In  this case, the dot product of nT with the vertical average of the curl 
of (2 .3b )  and the application of the boundary condition (2.4) yields 

a -n,.(Vxq) = - S h , x k . V ( T ) ,  
at 

where nT x k. (VT) = nT x k. V(T). If = 0 (or if nT x k = 0) (4.2) gives directly 
the time independence of the vertically averaged component of vorticity in the 
nT direction, which is, therefore, carried by the steady mode. Otherwise, how- 
ever, (4.2) states that this z-averaged component of vorticity changes in time 
due to certain horizontal gradients in the vertically averaged temperature. The 
substitution of the gradient of the vertical average of ( 2 . 3 ~ )  into the time de- 
rivative of (4.2) eliminates the temperature and results in the equation, 

We can see from (4.3) that, with nT x k + 0 and with S < I, the quantity 
nT . (V x q) ( = nT . V x (9)) varies on a long time scale T = X*t. In  the limit S + 0 
this unsteady motion approaches a steady flow. 

With regard to our original non-dimensionalization in 3 2, we point out that 
the time scale T = Sh is independent of the value of the parameter 6. Once the 
scaling for T is established, our choice for the scaling of 6, (2 .2 ) )  follows from the 
requirements that, in the limit S -+ 0, q,,. k = O( 1) and also that q,, .?( balance 
the time derivative of the lowest-order temperature in ( 2 . 3 ~ ) .  

4.1. Uniquely defined contours 

Let us f i s t  consider the initial-value problem for a container whose surface is 
composed of uniquely defined geostrophic contours. The initial procedure is 
similar to that of the last section with the exception that, based on the considera- 
tions just given, we must allow the geostrophic flow to vary on the 7 time scale. 
Therefore, assuming an expansion similar to (3.3), where, however, all quantities 
are now assumed to depend also on T ,  for example, 



Initial-value problem for a weakly-stratified Jluid 17 

we find identical lowest-order equations (3.9) and (3.10). The first-order equations 
are 

and 

with the boundary conditions, 

qgl.fi = q,.fi = 0, on the container surface. (4.7) 

Since the lowest-order equations are the same as those for a homogeneous fluid, 
i t  follows that 

q =- - - (  " m  h, 7) nT x nB = f (h ,  7) nT x nB, (4.8) 
go 2 ah 

(4.9a) 

(4.9b) 

To determine the function f in (4.8), it is necessary to  consider the first-order 
equations (4.5). These can be manipulated in a manner similar to that used by 
Greenspan (1965) in the spin-up problem. I n  our case, however, considerable 
algebreic and conceptual simplification can be achieved if it is realized that the 
procedure to  be followed is equivalent to  that of taking the mean circulation of 
( 4 . 5 b )  and using the result (Howard 1968, p. 49) that, with V .q = 0, 

where Xh(h) and Xk(h) are the portions of the top and bottom surfaces enclosed 
by the particular geostrophic contour C = C(h) on that surface. 

To determine f, therefore, we take the mean circulation of (4.5b), and use 
(4.10) in conjunction with the boundary condition (4.7), to  obtain 

a 
a? -NMC(q,,; h) = MC(T,,k; h). (4.11) 

Next, taking the mean circulation of ( 4 . 5 ~ )  multiplied by k, we find 

a 
a7 -Mc(T,,G;~) = -MC[(qgo.G)li;h1, (4.12) 

which, when substituted in the r derivative of (4.1 l ) ,  yields 

a 2  
- MC(q,o; h)  + MC[(qgo. G )  k; h] = 0. 
a72 

(4.13) 

Finally, substituting (4.8) into (4.13), we obtain the equation for f: 

ay K -+-f = 0, 
h2 J 

2 

(4.14) 

F L M  46 
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where J = J (h )  is given by (2.19), and where 

(4.15) 

The solution to  (4.14), since K / J  > 0, is simply 

f = C,(h) cos ( K / J ) 3  7 + C2(h) sin (K/J)4 7. (4.16) 

Before we can determine the coefficients C, and C2 from the initial conditions, 
however, we need an  additional result. If we take the mean circulation of (4.6b) 
and use (4.10), (4.7) a.nd (4.9b), we find 

(4.17) 

Since To is independent oft by (3. lOc), we must require, to avoid a secular growth 
rate in t of JfC(q3; h ) ,  that JfC(T,fC; h) = 0. (4.18) 

It then follows from (4.11) and (4.18) that 

= MC(Tuo(r = 0)k;h) = I M C ( T & ; ~ ) .  (4.19) 

With the use of ( 4 . 9 ~ )  and (4.19), the solution for quo can be written 

qgo = [J-lMC(q,; h)  cos (K/J)*7+ (JK)- i  XC(T*k; h)  

x sin ( K / J ) t  71 nT x n,, ( 4 . 2 0 ~ )  
and it follows that 

T,, = [ - (JK)- t  iWC(q,; h )  sin ( K / J ) h  +K-lJIC(T,k; h)  

x cos ( K / J ) t ~ l n ,  x n,.k, (4.20b) 

where (4.20b) has been obtained by the substitution of ( 4 . 2 0 ~ )  into ( 4 . 5 ~ )  and 
the subsequent integration of ( 4 . 5 ~ )  with respect to r .  The constant of integration 
has been ignored, and it will be assumed that the steady part of the lowest-order 
temperature field is written as a separate component To,, where, however, a 
consideration of (4.11) leads to the conclusion that NC(TO8k; h)  = 0. Note that 
for ‘flat’ contours we have k . nT x nB = 0, which implies that  K = 0, and, there- 
fore, the oscillatory behaviour in (4.20a, b )  is not present. 

The solution for quo is similar in structure to  that of the geostrophic flow of a 
homogeneous fluid, except that  it has an oscillatory behaviour, with frequency 
dependent on h, on the long T time scale. I n  the limit S -+ 0, quo approaches the 
geostrophic flow of a homogeneous fluid determined by the mean circulation 
theorem. 

Guided by the results of the last section, for containers with ‘flat’ contours, 
we should expect additional unsteady motions to arise in response to certain 
distributions of the initial temperature field. However, we do not attempt to 
describe these motions in this (or in the following) case. Also, we mention that 
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some part of a general initial temperature distribution will presumably go into 
a completely steady mode To, for which it appears that the amplitude of the 
corresponding lowest-order, steady velocity components will be O(S4). 

4.2. Non-unique contours 

For containers with non-unique contours, whose description was given at the 
beginning of this section (4.1 a, b ) ,  the treatment of the initial-value problem 
proceeds with the same expansion, (3.3) and (4.4)) as that just used and the 
resulting sets of equations (3.9), (3.10), (4.5) and (4.6) are, of course, the same. 
The determining equation for the lowest-order variables can be found from the 
first-order equations (4.5) by using a properly modified form of the procedure 
employed before to find (4.14). I n  fact, however, the appropriate relation has 
already been obtained in (4.3). Substituting the expansion (3.3), modified as 
given by (4.4), and the expression for the velocity 

qgo = in, x VPg0> (4.21) 

which can be obtained from (3.9) and the boundary conditions (2.4), into (4.3), 
we find the governing equation for pgo: 

(4.22) 

The boundary condition (2.4) on the vertical side wall, with unit normal vector 
As, is, with the use of (4.21), fiS x n,. Vpgo = 0, which, with (3.5)) can be taken as 

pgo = 0, on the side wall. (4.23) 

Since the lowest-order equations (3.9) and (3.10) are the same as those for a 

n,.V x q,,(T = 0)  = n,.V x (q*). (4.24) 

I n  addition, considering (4.5b), and using arguments similar to those leading to 

homogeneous fluid, it follows that 

~~ 

(4.18), we obtain 

from which it follows that 
nTxk .V<To)  = 0, (4.25) 

n, x k. VT,,(T = 0) = nT x k . v(T,). (4.26) 

I n  terms of the pressure, the initial conditions (4.24) and (4.26) can be expressed 
as 

and 

n, . V x [n, x Vpg0(7 = O)] = 2n,. V x {q*), (4.27 a)  

(4.276) 

Equation (4.22)) with boundary condition (4.23) and with initial conditions 
given by the solutions to (4.27a, b )  (which also have boundary condition (4.23))) 
determines the geostrophic pressure. The velocity is then determined by (4.21), 
and, with the use of (4.21), the temperature Tgo can be obtained from the integra- 
tion of ( 4 . 5 ~ )  with respect to T .  In  the limit S -+ 0 the time scale of these motions 
goes to zero and the flow approaches the geostrophic steady flow of a homo- 
geneous fluid determined by (4.24). 

2-2 
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Let us consider the particular case of the ‘doubly sliced’ cylinder (figure 1) 
for which g = - (b/a) y, f = 1 - g and 

nT = - n, = k - (b/a) j, (4.28) 

where a and b are the direction cosines, such that a2 + b2 = 1. With the substitu- 
tion of (4.28) into (4.22), we obtain 

(4.29) 

where V$pgo = pgosx + (1 - b2)pgOvu. If a solution to (4.29) is sought in the form, 

P g o  = Prnexp (iornt), (4.30) 

a2Pm 2 a2pm = 0, 
----Prn= 
BY2 

equation (4.29) becomes (4.31) 

where of = b2(1 +a2/&)-1, (4.32) 

and where, with boundary condition (4.23), only the above choice of sign for 
pmXx leads to non-zero solutions. It follows from (4.32) that of < b2, and, there- 
fore, with account taken for the r scaling, that all the frequencies for these modes 
are smaller in absolute value than bSt (bN in dimensional units). 

The solution to (4.31) with boundary condition (4.23), for a rectangular region 
0 Q x < xo, 0 Q y Q yo, has been given by H ~ i l a n d  (1962). The resulting expression 
for pBo is 

Z; (Arnn cos omnt + Bmn sin cm,t) sin e) ~ sin (z), (4.33a) 
m m  

m = 1  n=l 
pgo = 

where p;, = (nxo/myo)2 and, therefore, where 

om, = mby0[(nax,J2 + ( m y o ) 2 ] ~ ~ .  (4.33b) 

We note that for each eigenvalue there is a corresponding infinite number of 
distinct eigenfunctions. For ‘flat’ contours (b = 0), the solutions to (4.31) are 
p ,  = 0 and no modes of this type exist. 

For the initial-value problem, the quantities pg0(7 = 0) and pgO7(r = 0) are 
given by the solutions to (4.27a, b) with boundary condition (4.23). In  the case 
of the rectangular cylinder, the coefficients A,, and B,, can then be determined 
in the standard manner by using the known completeness and orthogonality of 
the terms in the double sine series. 

The solution to (4.31), for a circular region 0 < r < y o ,  has been studied by 
Barcilon (1968). Different boundary conditions were used for the pressure, but 
the eigenfunction solutions given there for the stream function correspond, with 
a modification of the eigenvalues, to the solutions for the pressure in our problem. 
The relation between the eigenvalues h in that paper and those in our case is 
p2 = h2(4 - h2)-l [for (p; x, y )  -+ (A;  x, z)]. We mention that again there is an infinite 
number of eigenfunctions for every eigenvalue. For the solution to the initial- 
value problem, the completeness and the appropriate orthogonality conditions 
of these modes would have to be considered, but we do not bother with that here. 
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5. Weak stratification waves 
The modal solutions to (4.29) might be called ‘contained weak stratification 

waves’. They are a particular class of internal-inertial waves which arise when 
a weak stratification restricts thelowest-order geostrophic flow. As mentioned by 
Howard 6t Siegmann the appearance of these low-frequency wave motions, with 
the addition of a weak stratification, is reminiscent of the appearance of low- 
frequency Rossby waves when a small change in geometry restricts the geo- 
strophic flow of a homogeneous fluid (Pedlosky & Greenspan 1967; also Greenspan 
1968, $2.16). 

In  these waves the essential mechanism involved is the interaction of the 
geostrophic flow and the basic stratification. This point is emphasized by the 
fact that, if the angle of slope of the top and bottom surfaces of the ‘doubly 
sliced’ cylinder is small (i.e. if b < l),  (4.29) can be approximated by 

and this is the same form of equation as would arise for a weakly stratified, 
rotating fluid in a container with ‘flat’ top and bottom surfaces and with the 
basic stratification (with Brunt-VaisSiIa frequency bN)  in the y direction. We also 
note that (5.1) has the same form as that governing z-independent internal waves 
in a fluid which is stratified in the y direction. In  this respect, the weak stratifica- 
tion waves can be looked on essentially as internal waves whose structure is 
held z-independent by the constraint of the rotation. 

These weak stratification waves can be expected in other situations where the 
elements of the basic interaction are present. For example, suppose that we have 
a situation where the centrifugal forces are not negligible and where, for the time 
scales of interest, the equilibrium surfaces of constant density are given by (see 
Greenspan 1968, $ 1.4) 

where r is the radial distance, in cylindrical polar co-ordinates, from the centre 
of rotation. In  this case, (2.3b)c) are replaced by 

x = +Fr2 + const., ( 5 4  

q , + 2 & x q  = -Vp+SgT(&-PrF), (5.3a 

+ XBq . (f - YrF) = 0, (5.3b) 

where F is the unit vector in the radial direction. 
Let us consider the motion in a circular cylinder (0 6 r < ro, 0 6 x < 1) with 

‘flat’ top and bottom surfaces and with axis aligned with the rotation vector 
and placed at the centre of rotation. In  this geometry, the basic Stratification, 
with the equilibrium surfaces (5 .2) ,  interacts with any part of the geostrophic 
flow that does not follow circular paths centred on the x-axis. This interaction, 
for S 1, can be demonstrated in a manner similar to that used previously to 
derive (4.3). Taking the vertical average of the dot product of f with the curl 
of ( 5 . 3 ~ )  and applying boundary condition (2.4)) we obtain 

- f . ( V x q )  a = S j F g ( T > .  a 
at (5.4) 
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If X = 0 or if F = 0, (5.4) expresses, as expected, the time independence of the 
vertically averaged z-component of vorticity. By integrating (5.4)) with respect 
to 8, around a closed path at  a fixed value of r ,  we find 

(6.5) 

We can reason, therefore, that the temporally conserved axisymmetric com- 
ponent of &. (V x q )  is ' carried ' by a steady geostrophic flow. The non-axisym- 
metric component will, however, be time-dependent, and, to find an equation 
for this part, we continue by substituting the vertical average of (5.3b) into the 
time derivative of (5.4), to obtain, after substituting the expansion (3.3) (with 
modification (4.4)), the relation 

The velocity qgo satisfies (3.9)) and is given, in terms ofpgo, by (3.4). In addition, 
we will assume that the steady part of the geostrophic flow, satisfying (5.5)) is 
written as a separate component. 

Equation (5.G) expresses the basic balance for unsteady motions on a r = XBt 
time scale and describes the motion of weak stratification waves in this situation. 
Substituting (3.4) into (5.6), we obtain the equation for the pressure, 

(5.7a) 

where, as in $4.2,  the boundary condition (2.4) on the velocity results in the 
condition, pffo(r = ro )  = 0. (5.7b) 

The eigenfunction solutions to ( 5 . 7 ~ )  b )  are 

PgOkm = Jk('tkmr/rO) exp [i(kB + %m7)1, ( 5 . 8 ~ )  

(5.8b) r k m  = f IkJ r o F / E k m >  

where k = 

A point of interest, in this particular problem, is that the restoring force for 
the waves varies with r and decreases as the centre of the cylinder is approached. 
Noting the similarity of ( 5 . 7 ~ )  to the equation governing the propagation of 
(2-independent) internal waves, with stratification in the r direction and with a 
variable Brunt-Vaisalii frequency rFN,  and recalling the properties of plane 
internal waves, we should expect Brunt-Vaisala trapping, for modes with wave- 
lengths small compared with the cylinder dimensions, in an annulus of fluid 
bounded by the outer side wall of the cylinder and by an inner surface at some 
radius determined by the mode frequency. If the equivalent Brunt-VaisalB 
frequency is rFN,  then we would expect the inner radius to be given by 

1, 2 2, . . ., and where tmk is the rnth positive root of Jk(tkm) = 0. 

T c  = I~,J/PN, 

where IT= is the dimensional frequency. 
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This behaviour is, in fact, included in the solution (5.8). An examination of 
the asymptotic behaviour of the Bessel functions for large values of k (Jeffreys & 
Jeffreys 1966, 521.06) shows that the functions Jk in (5.8) have an oscillatory 
behaviour for T > rc, where rC = Ik[ ro/&cm = la,,l/P (rC = IgDkm//PN in terms 
of the dimensional frequency), and an exponentially decaying behaviour for 
r < rc. The critical radius rc = la,,(/P clearly represents a ray oaustic for the 
waves of frequency vkm which are, therefore, trapped in the region rc 6 r < ro. 

This research was initiated while the author was a Postdoctoral Fellow in the 
1968 Summer Program in Geophysical Fluid Dynamics a t  the Woods Hole 
Oceanographic Institution, where the problem was pointed out by Professor 
L. N. Howard in his formal lecture series. The author thanks Professor Howard for 
several additional stimulating discussions and for many helpful comments and 
suggestions. This work was expanded and completed with the support of the 
Atmospheric Sciences Section, National Science Foundation under grant GA- 
1019. 
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